Neurociência dos transtornos mentais devido ao uso de substâncias psicoativas

Prof<sup>a</sup> Dr<sup>a</sup> Patricia Rebello Teles

Curso de Formação de Terapeutas em Dependência

Química

Mestre e Doutora em Física Terapeuta em Dependência Química







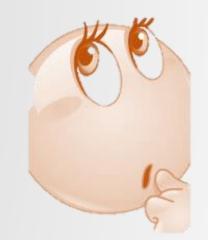


#### Ao final da aula o aluno deverá estar apto a:

- Reconhecer os conceitos técnicos gerais sobre a neurobiologia dos transtornos mentais relacionados
  ao uso de drogas lícitas e ilícitas. Identificar a área do cérebro relacionada ao sistema de
  recompensa. O que são os neurônios e os principais neurotransmissores. Como o sistema de
  recompensa é acionado com o uso das substâncias psicoativas. Síndromes da dependência,
  abstinência, fissura e recaída.
- Entender que precisamos preservar os neurotransmissores (bons hábitos, alimentação, exercícios físicos e cognitivos). Não conseguimos controlar nossos sistemas neuronais mas podemos preserválos para evitar disfunções.
- Entender a dependência química técnica e cientificamente, ajudando na elaboração da anamnese para o Plano Individual de Tratamento (PIT) e na relação terapeuta-paciente. A dependência química é uma doença psiquiátrica e precisa de tratamento multidisciplinar.



Animais (racionais ou não) precisam de motivações concretas para buscar alimento ou sexo, ações consideradas recompensadoras e que garantem a sobrevivência da espécie. É um comportamento natural e instintivo.

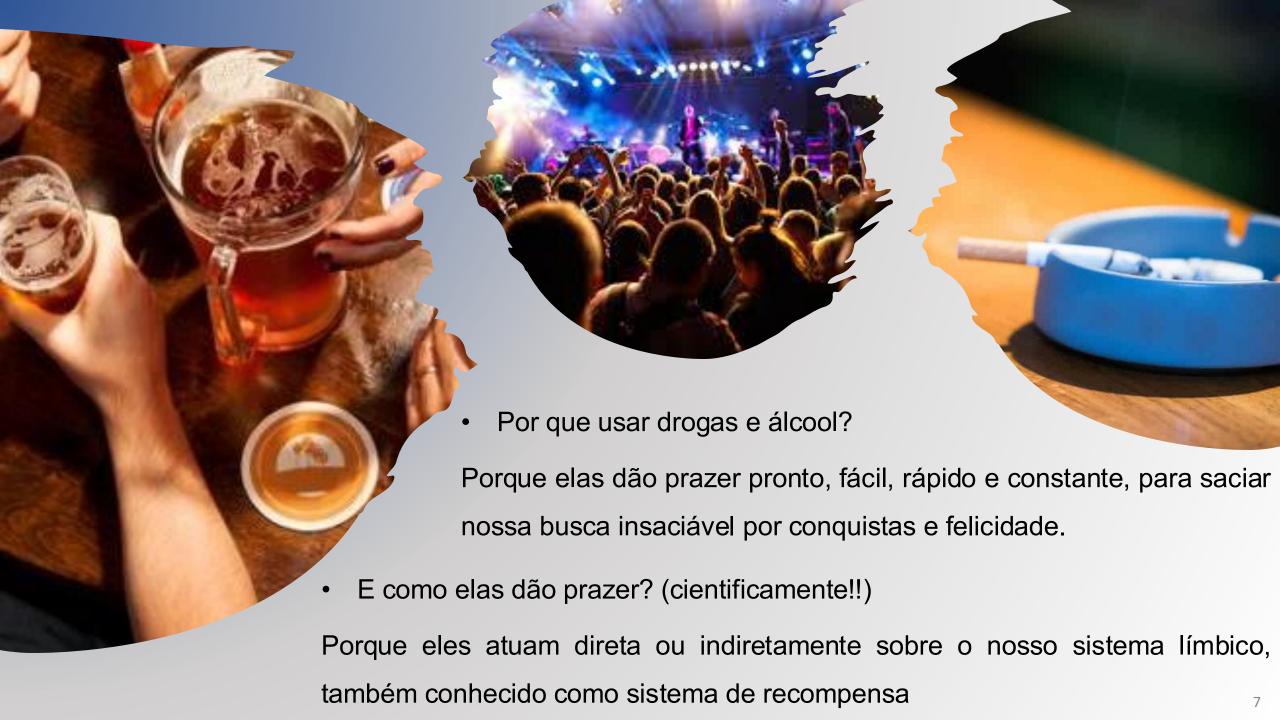

 Comer uma sobremesa depois do almoço, um chocolatinho na hora do café com os amigos, sentir-se bem indo à academia em plena manhã de domingo.





# HOMO SAPIENS: aquele que pensa, é sábio!!

Problemas financeiros, emocionais, sociais, de auto-aceitação, perdas diversas,
 deficiências culturais e educacionais, stress etc




• A "VIDA é bonita" (Gonzaguinha): uma sucessão de adaptações diárias que nem sempre estão de

acordo com a nossa vontade (Oração da Serenidade).

 Drogas, álcool, comida, doces, relacionamentos: para "preencher um vazio", para fugir da realidade, devido distúrbios psiquiátricos, aceitação no grupo de amigos, ser popular, empoderamento (progagandas de cigarro alguns anos atrás)



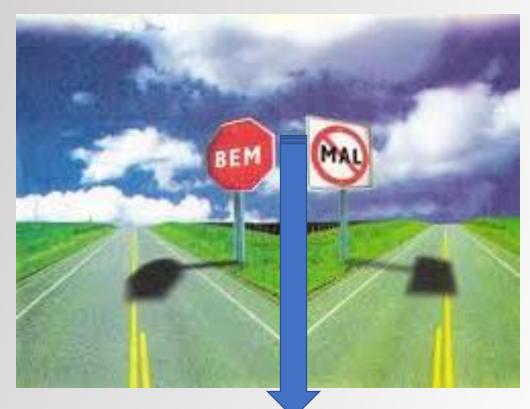




# Relação do indivíduo com as substâncias psicoativas

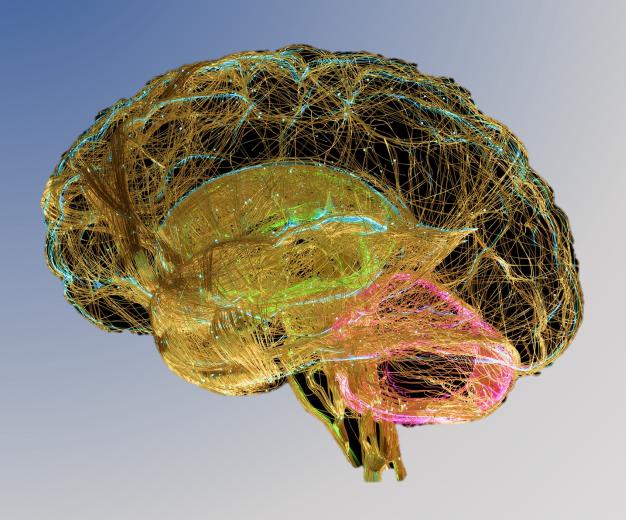
Uso controlado, ocasional, não compulsivo, recreativo; muito comum;

**Uso nocivo**, consequências adversas e alterações significativas de comportamento que ainda não configura dependência;


**Uso compulsivo**, configura dependência, muito prejudicial com dificuldades na rotina, afastamento da família, do trabalho e nos relacionamentos; droga é a prioridade na vida do indivíduo; vontade incontrolável de sentir os efeitos de "prazer" que a droga provoca, fissura (*craving*); perda do controle da sua vida.

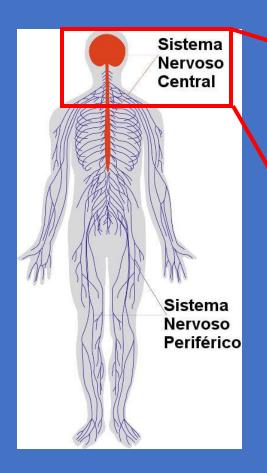
- Nem todo usuário de drogas se torna dependente.
- **Predisposição genética influencia (**o estilo de vida agrega mudanças ao **epigenoma** ("epi" = acima; regula a (des)ativação dos genes, que podem ser transmitidas às gerações posteriores).

### Substâncias psicoativas no Sistema Nervoso Central (SNC)


- Depressores: álcool, sedativos/hipnóticos (ansiolíticos, calmantes, barbitúricos), opióides (heroína, morfina, codeína)
- Estimulantes: tabaco, anfetaminas, cocaína, cafeína
- Modificadores: canabinóides, alucinógenos, solventes voláteis

Transtornos psiquiátricos devidamente diagnosticados e tratados com drogas sob recomendação médica => controle do distúrbio e melhora da qualidade de vida do paciente.




Equilíbrio e bom senso
Conhecimento, Educação
Preservação da saúde
física e mental

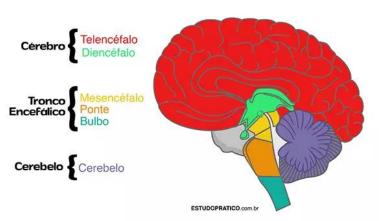
### "O verdadeiro criador de tudo"\*




- O nosso cérebro busca potencializar as sensações de prazer e satisfação, de bem estar.
- É o órgão mais sofisticado do nosso corpo.
- Coordena todo o funcionamento do corpo.
- Responsável pelas ações voluntárias e involuntárias do nosso corpo.
- Funções motora, sensorial e emocional.

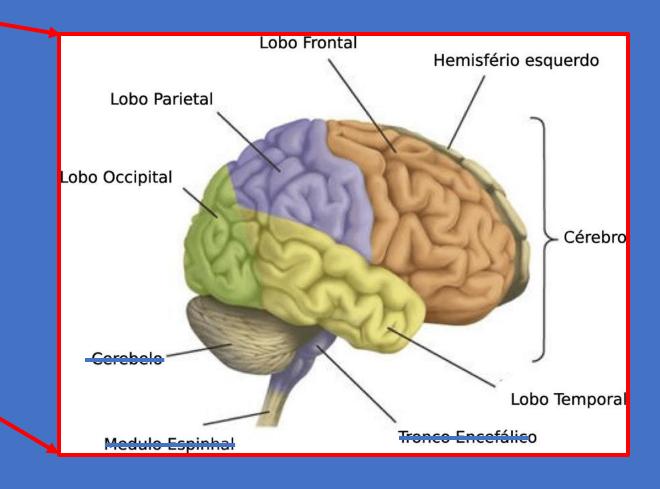




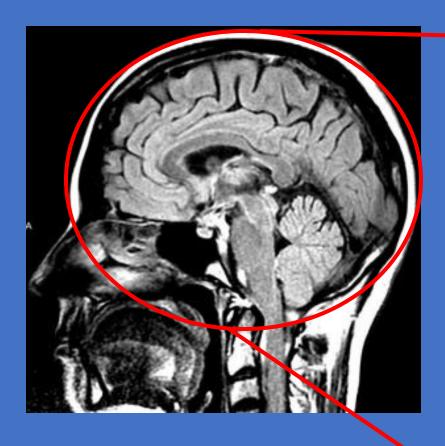

#### SISTEMA NERVOSO CENTRAL

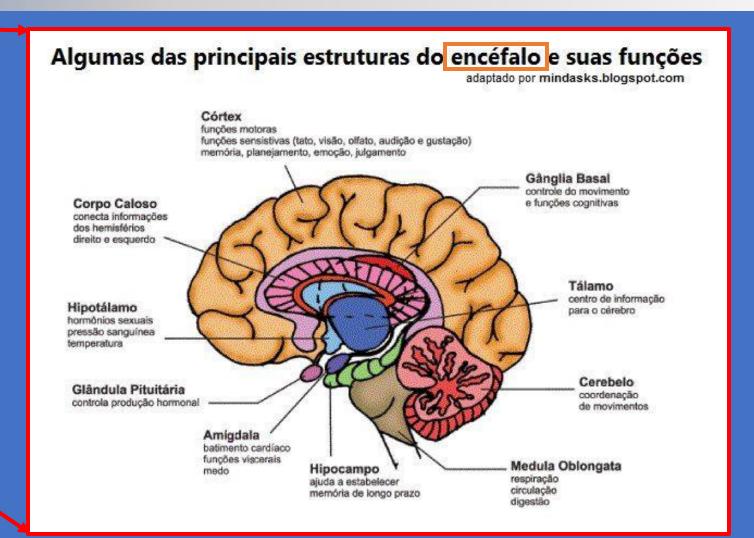


Formado pelo **encéfalo** 


e pela medula espinhal

Encéfalo é formado pelo cerebelo, tronco encefálico e cérebro.

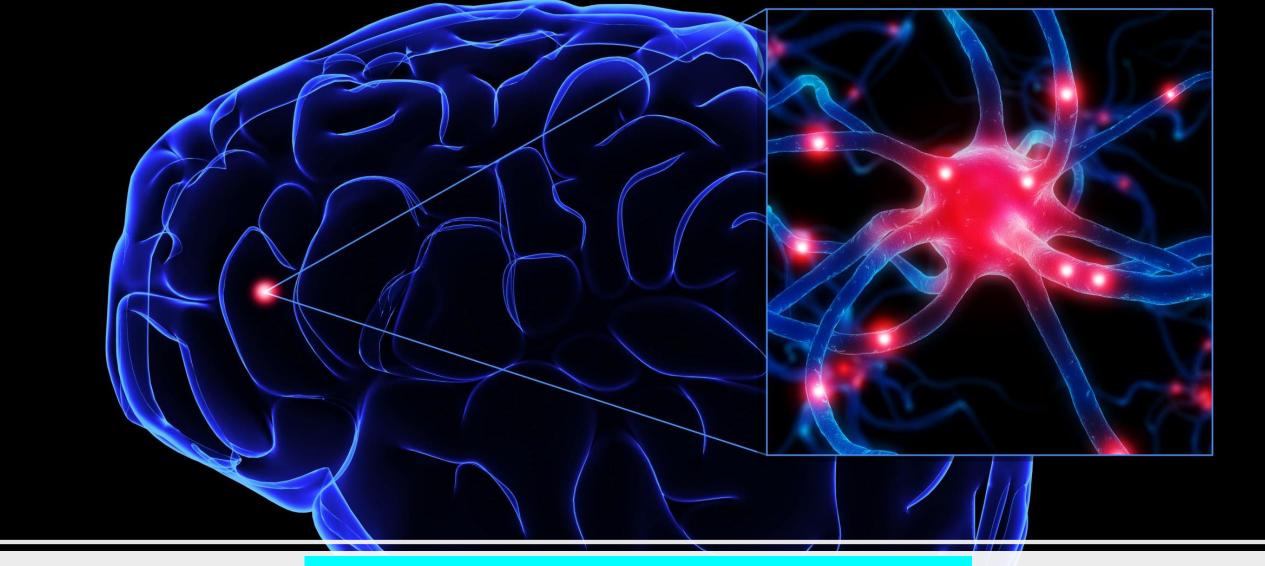




O **cérebro** é dividido por uma fissura longitudinal em 2 hemisférios, e é formado por diferentes estruturas, com funções diferentes.



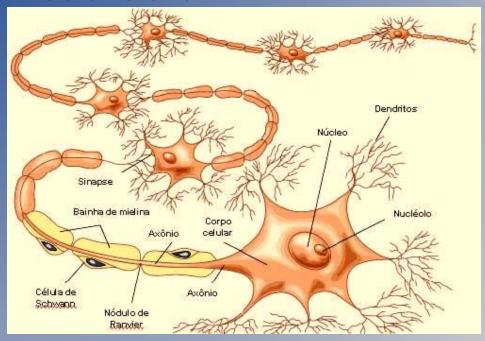



Obs: Há uma sofisticada e densa conexão entre as estruturas cerebrais, como em uma orquestra.

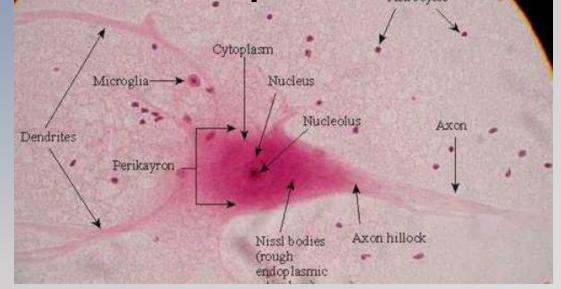





#### Curiosidade: Modelo do "cérebro" triuno (obsoleto!!)



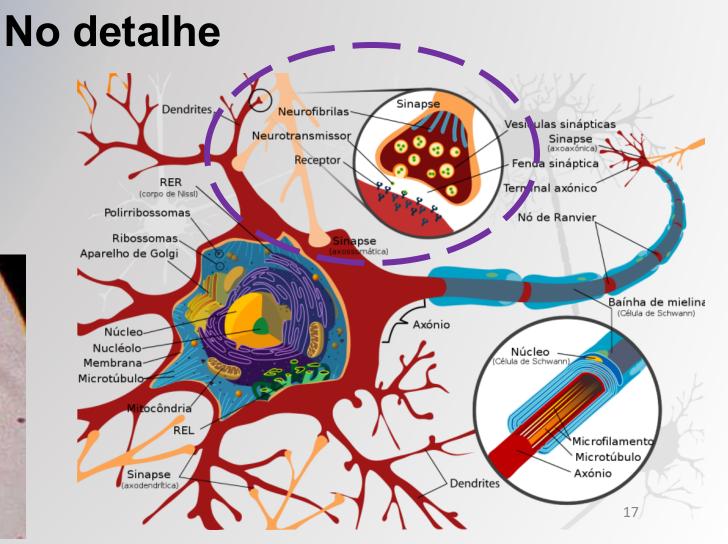

- Modelos têm sido úteis para entender o mundo: desde os tempos antigos, os modelos tentam explicar a realidade.
- Modelo Triuno do cérebro\* é uma versão muito simplificada desse órgão tão sofisticado.
- Na verdade estamos lidando com uma intrincada rede interconectada de neurônios seja do córtex, do sistema límbico ou do tronco encefálico que se comunicam, modulam e se retroalimentam, direta ou indiretamente.




Rede Interconectada de Neurônios

#### Visão Geral




No microscópio

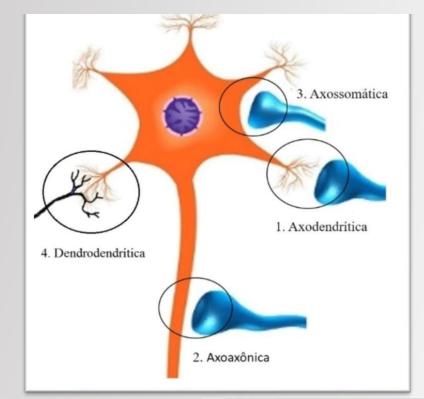


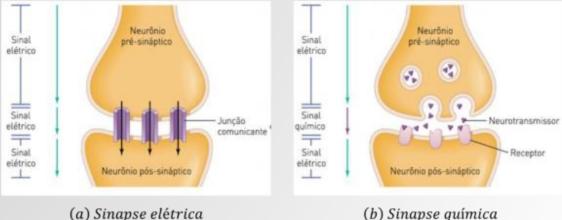
Células excitáveis\* e básicas do sistema nervoso

Tem três partes básicas: os dendritos, o corpo cellular e o axônio

\*Responsável pela transmissão de informação através de impulsos nervosos (alteração no potencial elétrico da membrana da célula nervosa)




#### **Sinapse**

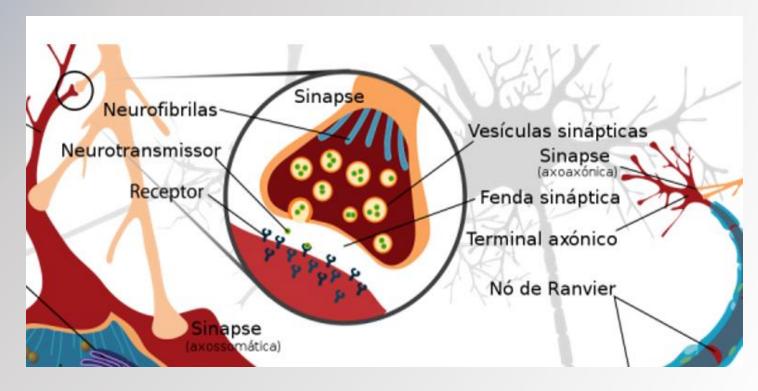

- A sinapse é uma região onde há a comunicação entre os neurônios, entre neurônios e músculos e entre neurônios e glândulas.
- sinapse química, o impulso nervoso (sinal elétrico)

  de um neurônio pré-sináptico é transformado em sinal

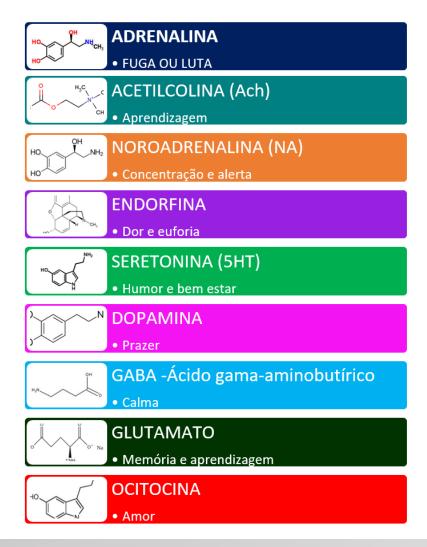
  químico (através de neurotransmissores), que atua na

  célula pós-sináptica.
- Nas sinapses elétricas as correntes elétricas fluem
   (fluxo de íons) diretamente de um neurônio à outro.






#### O que é um neurotransmissor?


Substâncias químicas produzidas nos neurônios com função de realizar <u>biossinalização</u>
 (habilidade que as células possuem em perceber e correctamente responder ao seu ambiente)

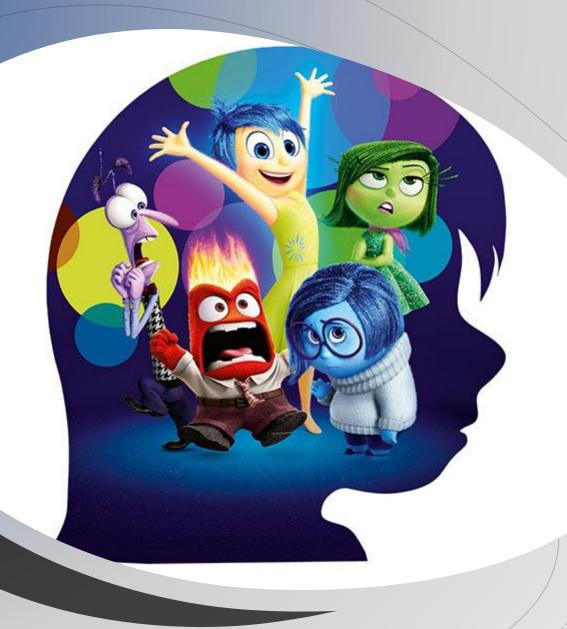
#### Funções:

- comunicação entre os neurônios,
- estimular a continuidade de um impulso
- ou efetuar a reação final em algum órgão ou músculo específico.



# PRINCIPAIS NEUROTRANSMISSORES

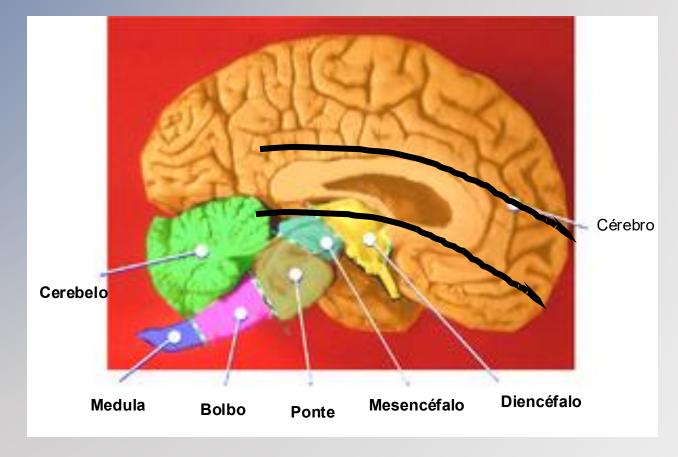


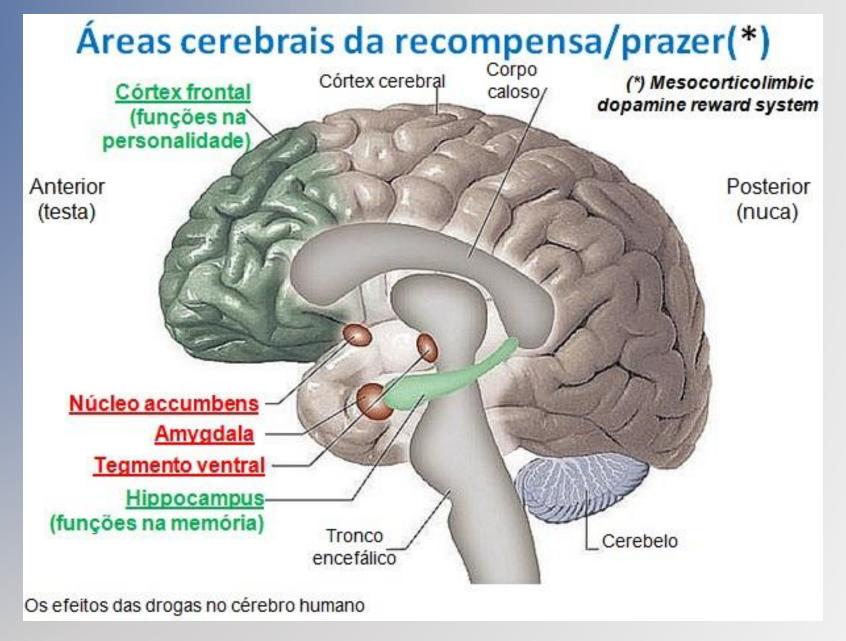

Agem como uma chave e o local do receptor age como um bloqueio => leva a chave certa para abrir bloqueios específicos.

 Se o neurotransmissor for capaz de funcionar no local do receptor, ele provocará mudanças na célula receptora.



As DROGAS e o ALCOOL


impactam o funcionamento dos neurotransmissores no cérebro!!




Sistema Límbico e Recompensa Cerebral

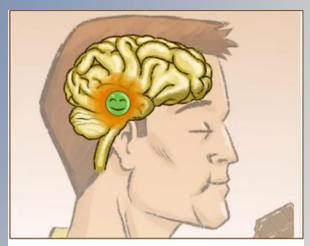
#### Sistema límbico (etimologia):

- expressão cunhada por Maclean (1952) => área no "limbo" ou seja "na margem ou extremidade" do cérebro;
- é a "principal" área do cérebro que processa as emoções

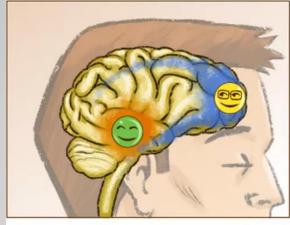




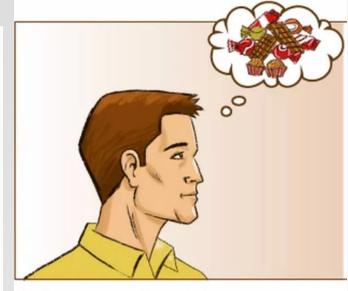
Na figura as "áreas do prazer" e demais áreas relacionadas ao Sistema de Recompensa


### Sistema de Recompensa Cerebral e Adicção I

- A dependência química é uma questão neurológica.
- Um "estímulo cerebral dopaminérgico" (uma experiência prazerosa) libera a produção de dopamina pela área tegmental ventral, que é um local de convergência para estímulos procedentes da amígdala (emoção) e do hipocampo (memória).
- Essa dopamina vai chegar ao **núcleo accumbens**, que reforça a emoção e a memória relacionada a sensação de prazer da droga. Isso gera uma espécie de circuito fechado. Resta ao **córtex pré-frontal** modular esse circuito (emoção x razão).


### Sistema de Recompensa Cerebral e Adicção II



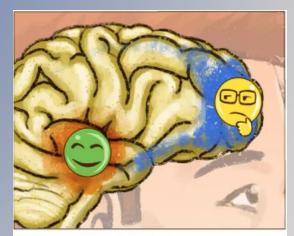

1. Quando você tem uma experiência prazerosa, o cérebro produz um neurotransmissor chamado dopamina. Isso ativa o sistema de recompensa.



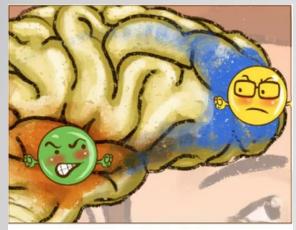
2. A "raiz" da dopamina está na área tegmental ventral, uma região rudimentar do cérebro, o que garante uma grande força biológica.



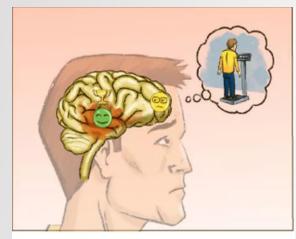
3. A dopamina percorre outras áreas até chegar ao córtex pré-frontal, nossa jovem área de modulação. É ele que vai dizer que você está satisfeito e deve parar de comer.




4. Se comer chocolate realmente lhe deixou feliz e satisfeito, seu cérebro registra que aquilo é prazeroso - e, portanto, é um comportamento que deve ser repetido.


### Sistema de Recompensa Cerebral e Adicção III




5. Como seu cérebro já sabe que comer chocolate é bom, a área tegmental ventral pede que você repita essa ação (e ela vai usar toda a sua força biológica para isso).



6. Mas, quando a informação chega ao seu córtex pré-frontal, vem a modulação. Você exerce nossa ainda recente capacidade de ser mais **racional** e pensa se deve mesmo comer o doce.



7. Ocorre, então, uma "batalha" entre as informações enviadas pela razão (o cortex pré-frontral) e pela emoção (a área tegmental ventral).

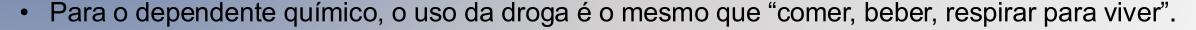


8. Se você deixar a emoção vencer e repetir frequentemente o comportamento prazeroso, ele vai ganhando força e fica cada vez mais difícil resistir a ele.

### Sistema de Recompensa Cerebral e Adicção IV

- Sem resistência, o circuito neuronal se adapta a esse novo modo de operação, o prazer da droga gera um "reforço positivo".
- O indivíduo sente uma necessidade incontrolável de usar a droga (fissura)
- Assim incorpora o uso da droga em suas necessidades fisiológicas diárias.
- Desenvolve **tolerância**. Com isso precisa cada vez de maiores quantidades da substância para atingir o mesmo prazer do início do consumo.
- As crises de **abstinência** surgem ao evitar o consumo, mas seus sintomas levam às inúmeras **recaídas** já que o circuito neural já adaptado à droga faz com que o corpo reaja severamente à sua ausência ("reforço negativo").
- O indivíduo passa assim a usar a droga como um meio de amenizar o "reforço negativo" e não mais para busca de prazer.

### Alterações Neurobiológicas no quadro de dependência química


- O mecanismo de ativação do sistema de recompensa varia de acordo com a substância.
- Cada droga altera a produção de neurotransmissores de forma particular, mas essa alteração afeta o indivíduo de forma geral (social, emocional, cognitiva e fisicamente)





# Reforço Positivo x Reforço Negativo I

- As alterações no circuito cerebral devido ao uso de substâncias psicoativas são involuntárias.
- "o dependente químico não querer se tratar", é uma questão somente de "vontade" ? NÃO!!



- Dependência química é uma doença como qualquer outra.
- Se nosso cérebro constrói esses circuitos dependendo dos efeitos da droga para que o organismo se sinta bem, não podemos considerar somente a "vontade" como fator primordial para o tratamento.
- O cérebro entende a droga como um comportamento básico, de necessidade básica.
  - Reforço positivo : sintoma de prazer que a droga potencializa
  - Reforço negativo: sintoma de desconforto que ocorre com a interrupção do uso da droga.

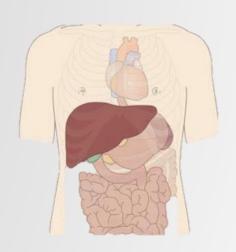
## Reforço Positivo x Reforço Negativo II

- Com o uso contínuo e compulsivo, o organismo se acostuma à droga, um processo de tolerância se
  instala e isso leva ao aumento da quantidade necessária para um reforço positivo. Aumento da
  quantidade, ou do tipo da droga, leva ao aumento do desconforto em períodos de abstinência,
  potencializando o reforço negativo e a recaída (com base nas memórias que temos da substância)
- O adicto começa a perder o "reforço positivo" e tem que gerenciar cada vez mais o "reforço negativo" até que a droga se torna tb uma dependência física.

Uma bola de neve descendo a montanha!

O adicto sofre e precisa de ajuda, terapia e medicamentos!!

### Bebidas Alcoólicas (Etanol I)


- Organização Mundial da Saúde (OMS), não existe um nível seguro para o consumo de bebidas alcoólicas.
- O uso traz riscos à saúde, o consumo excessivo de álcool no longo prazo é um fator de risco para diversas doenças como cirrose hepática, hipertensão arterial, depressão e vários tipos de câncer..
- O álcool já começa a agir sobre nossos neurotransmissores nos primeiros minutos quando ingerimos uma taça de vinho ou uma lata de cerveja.

### Bebidas Alcoólicas (Etanol I)

Etanol ingerido é entendido pelo corpo como veneno do qual ele precisa se livrar.

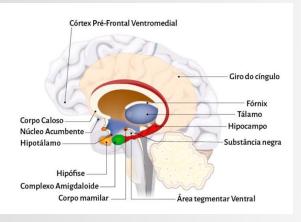


Fígado precisa "quebrar" o etanol em partes menores.





O excesso não processado pelo fígado vai para a corrente sanguínea e consequentemente para o cérebro:


- (i) ativa o Sistema de Recompensa
- (ii) estimula a liberação de dopamina
- (iii) altera a comunicação entre os neurônios interferindo com a ação de neurotransmissores, como o GABA e o glutamato.

### Bebidas Alcoólicas (Etanol II)

Aumenta efeitos do GABA (calma; redução sinais)

Reduz efeitos Glutamato (memória e aprendizagem)

Tudo fica mais devagar no cérebro e por isso os efeitos das bebidas.



- (i) A redução da troca de sinais no cerebelo reduz a atividade motora;
- (ii) A atividade mais lenta no <u>cortex pré frontal</u> e no <u>sistema límbico</u> junto com a liberação de dopamina diminui o autocontrole, a inibição social e aumenta a propensão de fazer coisas das quais vc vai se arrepender no dia seguinte;
- (iii) A redução de atividade no <u>hipocampo</u> diminui capacidade de formar novas memórias e recuperá-las depois;
- (iv) Etanol inibe a liberação de vasopressina pela <u>hipófise</u> (hormônio produzido no <u>hipotálamo</u> e secretado pela hipófise que estimula os rins a conservarem água no corpo para evitar a desidratação) resultando em muita vontade de urinar. Se continuar a beber, a tendência é que seu corpo compense a falta de água buscando-a no cérebro e isso leva às dores de cabeça que acompanham a ressaca.

Efeitos das

Bebidas



| CAS (g/100ml)    | Efeitos sobre o corpo                                                                                               |                |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| 0 ,01–0 ,05      | Aumento do ritmo cardíaco e respiratório                                                                            |                |  |  |  |  |
|                  | Diminuição das funções de vários centros nervosos                                                                   |                |  |  |  |  |
|                  | Comportamento incoerente ao executar tarefas                                                                        |                |  |  |  |  |
|                  | Diminuição da capacidade de discernimento e perda da inibição                                                       |                |  |  |  |  |
|                  | Leve sensação de euforia, relaxamento e prazer                                                                      |                |  |  |  |  |
|                  | Entorpecimento fisiológico de quase todos os sistemas                                                               |                |  |  |  |  |
| 01,0-00,0        | Diminuição da atenção e da vigilância, reflexos mais lentos, dificuldade de coordenação e redução da força muscular |                |  |  |  |  |
|                  | Redução da capacidade de tomar decisões racionais ou de discernimento                                               |                |  |  |  |  |
|                  | Sensação crescente de ansiedade e depressão                                                                         |                |  |  |  |  |
|                  | Diminuição da paciência                                                                                             |                |  |  |  |  |
|                  | Reflexos consideravelmente mais lentos                                                                              |                |  |  |  |  |
|                  | Problemas de equilíbrio e de movimento                                                                              |                |  |  |  |  |
| 0,10-0,15        | Alteração de algumas funções visuais                                                                                |                |  |  |  |  |
|                  | Fala arrastada                                                                                                      |                |  |  |  |  |
|                  | Vômito, sobretudo se esta alcoolemia for atingida rapidamente                                                       |                |  |  |  |  |
| 0,16-0,29        | Transtornos graves dos sentidos, inclusive consciência reduzida externos                                            | dos estímul    |  |  |  |  |
|                  | Alterações graves da coordenação motora, com tendência a car frequentemente                                         | nbalear e a d  |  |  |  |  |
|                  | Letargia profunda                                                                                                   |                |  |  |  |  |
| 0.20.0.20        | Perda de consciência                                                                                                |                |  |  |  |  |
| 0 ,30–08, 0      | Estado de sedação comparável ao de uma anestesia cirúrgica                                                          |                |  |  |  |  |
|                  | Morte (em muitos casos)                                                                                             | 1 dose cachaça |  |  |  |  |
|                  | Inconsciência                                                                                                       | Mulher         |  |  |  |  |
| a partir de 0,40 | Parada respiratória                                                                                                 | Copo(s)        |  |  |  |  |
|                  | Morte, em geral provocada por insuficiência respiratória                                                            | 1 2            |  |  |  |  |

A Associação Médica Americana considera como uma concentração alcoólica capaz de trazer prejuízos ao indivíduo 0,04 g/100 ml de sangue

O corpo humano decompõe e elimina o álcool numa proporção de 0,15 g por litro de sangue por hora.

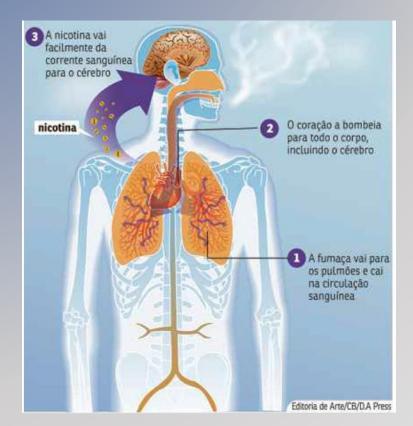
1 dose padrão = 3 dl de cerveja OU 1 dl de vinho OU 0,2 dl de cachaça ou destilados. 1dl =100ml

Mulheres (Promille - Valor Diretivo - gramas de álcool por litro de sangue)

|         | •     |       |       |       | •     | ,     |
|---------|-------|-------|-------|-------|-------|-------|
| Copo(s) | 40 kg | 45 kg | 50 kg | 60 kg | 70 kg | 80 kg |
| 1       | 0,45  | 0,40  | 0,35  | 0.30  | 0,25  | 0,25  |
| 2       | 0,90  | 0,80  | 0,75  | 0,60  | 0,50  | 0,45  |
| 3       | 1,40  | 1,25  | 1,10  | 0,95  | 0,75  | 0,65  |
| 4       | 1,85  | 1,65  | 1,50  | 1,25  | 1,00  | 0,90  |

Homens (Promille - Valor Diretivo - gramas de álcool por litro de sangue)

|         |       |       |       |       | •     |        |
|---------|-------|-------|-------|-------|-------|--------|
| Copo(s) | 50 kg | 60 kg | 70 kg | 80 kg | 90 kg | 100 kg |
| 1       | 0,30  | 0,25  | 0,25  | 0,20  | 0,15  | 0,15   |
| 2       | 0,60  | 0,50  | 0,45  | 0,40  | 0,30  | 0,25   |
| 3       | 0,95  | 0,75  | 0,65  | 0,55  | 0,50  | 0,45   |
| 4       | 1,25  | 1,00  | 0,90  | 0,75  | 0,65  | 0,60   |
|         |       |       |       |       |       |        |


Concentração de Álcool no Sangue (CAS)

aúdeRS Padrão-Ouro

https://www.ufrgs.br/telessauders/noticias/intoxicacao-por-alcool/https://www.sfa-ispa.ch/DocUpload/promilletabelle\_por\_web.pdf

### Tabaco (Nicotina)

- Nicotina é encontrada nas folhas de tabaco (Nicotiana Tabacum); responsável pela dependência do fumo, além de causar prejuízos à saúde (câncer de pulmão)
- Nicotina atinge o cérebro, se junta aos receptores de acetilcolina e imita suas ações.
- Também ativa áreas do cérebro envolvidas na produção de sensações de prazer e gratificação, aumentando produção de dopamina no núcleo accumbens.





### A fumaça do cigarro

- (i) fase gasosa: monóxido de carbono, nicotina, amônia, cetonas, formaldeído, acetaldeído e acroleína, entre outras substâncias; irritação nos olhos, nariz, garganta e paralisia dos movimentos dos cílios dos brônquios (um dos mecanismos de defesa do sistema respiratório).
- (ii) <u>fase particulada</u>: nicotina e alcatrão (composto de mais de 40 substâncias comprovadamente cancerígenas, formado a partir da combustão dos derivados do tabaco: arsênio, níquel, benzopireno, cádmio, resíduos de agrotóxicos, substâncias radioativas, como o Polônio 210, acetona, naftalina e até fósforo P4/P6, <u>substâncias usadas em veneno para matar rato</u>).

#### Remédios para emagrecer (Anorexígenos I)

- Anfetaminas sintetizadas primeiramente em 1887, em laboratórios da Alemanha, pelo pesquisador químico Lazar Edeleanu.
- Classificadas como psicotrópica, com propriedades psicoestimulantes.
- Usadas durante a II Guerra Mundial para manter os soldados acordados e mais

ativos.



Prof. Dr. Lukasz Kamienski, "As Drogas na Guerra" (link)

- Soldados mais atentos e confiantes, baixa sensação de fome e fadiga (o composto químico envia mensagem ao cérebro de saciedade) => soldados por mais tempo em ação sem necessidade de descanço e alimentação.
- Consumo de Pervitin pela Luftwaffe. O Gabinete Britânico descobriu o uso e estimou o consumo de cerca de 35 milhões de comprimidos para 3 milhões de soldados alemães em 3 meses. Os Aliados optaram pela Benzedrina, dentre outras (meio milhão de tabletes de benzedrina para as tropas americanas enviadas ao norte da África em 1942)

# Remédios para emagrecer (Anorexígenos II)

- Medicamentos à base de anfetaminas (drogas sintéticas)
- Interferem nos níveis de dopamina (prazer), na norepinefrina (saciedade) e na noradrenalina (concentração e alerta), aumentando a liberação e diminuindo a recaptação desses transmissores\*\*.
   Hipotálamo: centro de controle do apetite.
- Compostos químicos também elevam os níveis de leptina no cérebro, o hormônio responsável pelo sinal de saciedade.
- Geralmente, os moderadores de apetite, trazem além da anfetamina, que é um estimulante (fazem o cérebro acelerar, ficar alerta), um outro composto químico para reduzir a ansiedade (fluoxetina, por exemplo)

| Droga do tipo Anfetamina      | Produtos (remédios comerciais) vendidos nas farmácias              |
|-------------------------------|--------------------------------------------------------------------|
| Dietilpropiona ou Anfepramona | Dualid S; Hipofagin S; Inibex S; Moderine inibidor do apetite      |
| Fenproporex                   | Desobesi-M; Lipomax AP; Inobesin inibidor do apetite               |
| Mazindol                      | Dasten; Fagolipo; Absten-Plus; Diazinil; Dobesix inibidor do apeti |
| Metanfetamina                 | Pervitin* usado contra cansaço, sensação de fome e sede e medo     |
| Metilfenidato                 | Ritalina TDAH                                                      |

http://cienciasecognicao.org/neuroemdebate/arquivos/2662

Além dessas substâncias mais comuns, há ainda outras como a fentermina, a sibutramina, a fendimetrazina e a benzfetamina.

<sup>\*\*</sup>Mecanismo de ação e efeitos colaterais link

# Opióides/Opiáceos I (Analgésicos)

- Os opiáceos são substâncias químicas, presentes na papoula, com reconhecida ação analgésica e depressora do sistema nervoso central.
- Os opióides consistem em produtos sintéticos com estrutura química diferente, porém com

atuação similar à dos opiáceos.

| Quadro 1                               |                                                                       |
|----------------------------------------|-----------------------------------------------------------------------|
| Classificação dos opiáceos / opioides. |                                                                       |
| Naturais                               | ópio, morfina, codeína, tebaína                                       |
| Semissintéticos                        | heroína, oxicodona, hidroxicodona, oximorfona, hidroximorfona         |
| Sintéticos                             | metadona, meperidina, petidina, fentanil, levo-α-acetilmetadol (LAAM) |
| Agonistas-antagonistas                 | buprenorfina, nalbufina, pentazocina                                  |
| Antagonistas puros                     | naltrexona, naloxona                                                  |

- Os opiáceos fazem parte da família de drogas agonistas. Esta família também inclui cannabis, nicotina e alucinógenos como o LSD.
- Os receptors presentes no cérebro são estimulados (ou inibidos) por agonistas (ou antagonistas) endógenos (como hormônios e neurotransmissores) ou produzindo uma resposta exógenos, biológica.

# Opióides/Opiáceos II (Analgésicos)

- Inibição pré-sináptica de liberação de neurotransmissores (como acetilcolina, dopamina, noradrenalina) e inibição pós-sináptica de recepção (inibe os receptores opióides), levando à diminuição de neurotransmissão => diminuem atividade do cérebro.
- Drogas semelhantes a opiáceos se comportam como neurotransmissores inibitórios, pois seus efeitos são semelhantes aos efeitos do neurotransmissor GABA.
- Efeitos crônicos do uso: a mente da pessoa fica completamente obnubilada, "abestalhada", sem nenhum contato com a realidade.

# Opióides/Opiáceos III (Analgésicos)

**SOCIEDADE** | **BRASIL** Reportagem de 27/03/2023

# O Brasil corre o risco de uma epidemia de fentanil?

Rayanne Azevedo

há 18 horas

Potente e altamente aditivo, opioide sintético mata mais de 70 mil pessoas por ano nos EUA e é pivô de uma crise de saúde pública no país. Substância foi apreendida às vésperas do Carnaval no Espírito Santo.

Altamente aditiva (o pico é imediato, e logo é preciso repetir a dose, em quantidades cada vez maiores, para sentir de novo a mesma sensação), a substância – cuja potência supera em até cinquenta vezes a da heroína e em cem vezes a da morfina— é também extremamente letal: bastam 2 miligramas para levar alguém à morte.

- Usada nos hospitais em cirurgias como analgésico e sedativo há várias décadas.
- Depressor do SNC: sensação de relaxamento, diminui o fluxo de pensamento, comumente usada para esquecer, se desligar dos problemas

### Cannabis (Maconha) I

- Os fitocanabinóides são os compostos naturais da Cannabis.
- São mais de 110 conhecidos, entre eles o CBD (cannabidiol) e o TCH (tetrahidrocanabinol).
- Outros canabinoides (CB) são o canabinol (CBN), o canabigerol (CBG), o canabicromeno (CBC) e outros.



- O THC é muito semelhante à anandamida, um neurotransmissor endógeno (produzido pelo nosso organismo) capaz de agir nos receptores CB1 e CB2 do sistema endocanabinóide (SEC). Seu nome deriva do sânscrito ananda, que significa "felicidade" ou "prazer extremo".
- Os receptores CB1 e CB2 estão presentes no hipocampo, no cerebelo, e nos gânglios da base.
- Os CB1 predominam no sistema nervoso central (cérebro e medula espinhal) e os CB2 no sistema nervoso periférico (fibras, gânglios nervosos e órgãos terminais).

## Cannabis (Maconha) II

- Assim com a anandamida, o THC também ativa os receptores CB1 e CB2. Mas THC é mais potente e fica mais tempo ativo no corpo => provoca dependência.
- O CBD tem efeito oposto ao THC: não induz efeitos psicóticos; ajuda em diversos tratamentos médicos, epilepsia, dor crônica, tratamento câncer dentre outros.

Maconha vendida nas ruas tem 4-5 vezes mais THC e é viciante, principalmente em usuários de uso contínuo por longo tempo (9% desenvolvem dependência) e entre aqueles que iniciaram uso na infância e adolescência (2 a 4 vezes mais chance de desenvolver dependência do que início na fase adulta).

O impacto da maconha no cérebro adolescente, é muito deletério: interfere com a memória, a atenção, a velocidade de processamento das informações e a capacidade de concentração.

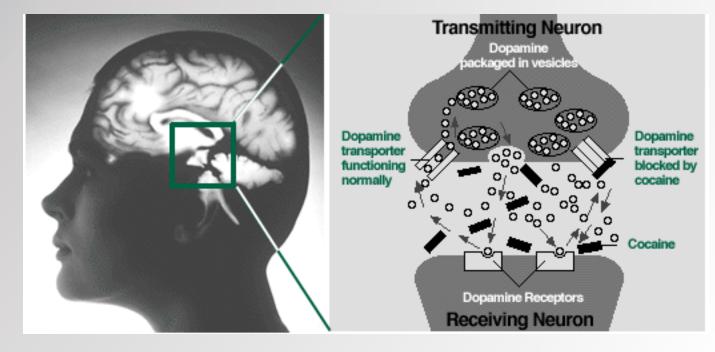
Aumenta chances de episódios psicóticos (alucinações e esquizofrenia).

#### Cocaina I

Droga mais potente que existe atualmente. Pode proporcionar 200 vezes mais prazer do que qualquer estimulo natural que o nosso organismo possa produzir. Extraída (isolada) das folhas de coca em 1859.








- "sal" (cloridrato de cocaína; pó e endovesoso; no cérebro 10-15min);
- "pedra" no caso do crack e "pasta" no caso da merla (ambos fumados, alcançam o pulmão chegando rapidamente ao cérebro 10-15s com efeito muito rápido de 5min e por isso induz maior consumo).
- Uso da cocaínadesestabiliza o sistema de recompensa e com o tempo e uso contínuo a droga passa a ser o único meio de obter prazer, o cérebro deixa de reagir aos estímulos cotidianos.
- Estado de excitação, hiperatividade, insônia, perda de sensação do cansaço, falta de apetite.

#### Cocaína II

- O crack refere-se à cocaína em substância fumável (por meio de tratamento com amônia ou bicarbonato de sódio e água, seguido de aquecimento para remoção do cloridrato)
- Fumado, alcança o pulmão chegando rapidamente ao cérebro 10-15s com efeito muito rápido de 5min e por isso induz maior consumo.

Bloqueia a receptação da dopamina, aumentando sua quantidade na fenda sináptica e mantendo os neurônios transmitindo sempre a mesma mensagem de prazer e euforia.

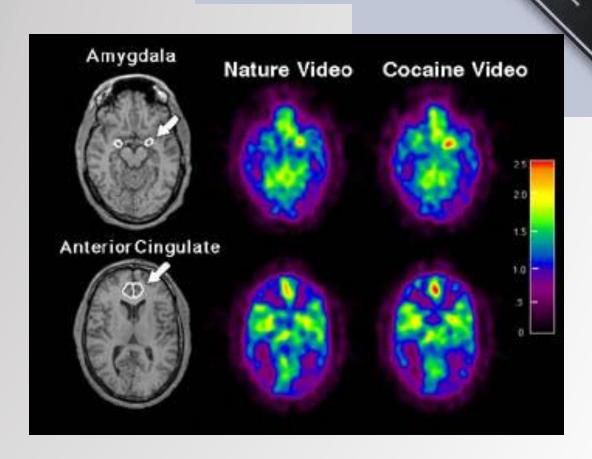


#### Heroína I

 Um opiáceo, que é transformado em morfina (processo de acetilação da morfina) e, depois, refinado até se transformar em heroína (diacetilmorfina). Sintetizada em 1898.



- Injetada diretamente no sangue por meio de seringas ou inalada.
- A heroína impede a produção de endorfinas (opióides endógenos;
   analgésico natural): a própria droga é um analgésico.
- Ela se decompõe em diferentes substâncias químicas que se ligam aos receptores opióides em seu cérebro. O mesmo vale para drogas como codeína e morfina.




#### Heroina II

- Como depressora do SNC, o uso de heroína muda a forma como você percebe e sente a
  dor, mas também causa um aumento da sensação de prazer e bem-estar porque uma
  enxurrada de dopamina é liberada em seu corpo.
- O consumo de heroína provoca rápida sensação de prazer seguidas de muita sonolência e lentidão nos pensamentos e movimentos.
- Quando o usuário pára com a droga, o organismo não volta automaticamente a produzir as endorfinas e a crise de abstinência é muito severa.
- O usuário volta a consumir para minimizar o reforço negativo, intensificando a dependência.

# Neuroimagem em Dependência Química

- A tomografia por emissão de pósitrons (PET) mostra que as regiões límbicas do cérebro de usuários de cocaína em tratamento são ativadas ao assistir a vídeos relacionados à cocaína.
- Assistir a vídeos de cenas da natureza não resulta na ativação dessas regiões.
- Isso sugere que o desejo induzido por cocaína reflete a atividade em regiões específicas do cérebro.



**Anterior Cinquiate Cortex** 

A maior ativação é indicada por cores na extremidade superior da escala à direita.



# Conclusões e Recomendações



# "Sou um adicto em recuperação"

 O aumento da concentração de dopamina em áreas do cérebro relacionada à experiência do consumo de drogas, alimenta o circuito "drogaprazer-droga".


Os estímulos ambientais e psicológicos vividos nos momentos que antecedem o uso da substância provocam uma "fissura", uma vontade incontrolável de usar a droga.

NÃO pode um gole, NÃO pode um trago, NÃO pode o movimento do cigarro... NÃO podem as pequenas coisas que facilitam recaídas.

- Surtos de fissura podem ocorrer depois de longos períodos de abstinência.
- A pessoa deixa de ser usuária, mas a dependência persiste => "só por hoje"

#### Importante que o indivíduo crie novas memórias, que substituam as antigas

- Tendência é que as alterações cerebrais se mantenham, e dificilmente as alterações devido ao consumo de drogas tem regressão.
- Substâncias e estímulos se entranham no cérebro de forma a serem perpetuados: moldam o funcionamento do cérebro para se manterem presentes, necessários, essencial para sobrevivência.





- Com o uso constante da substância, o circuito cerebral se adapta, podendo permanecer por longo período mesmo cessando o uso => as recaídas se devem a essas alterações no cérebro que são permanentes.
- O tratamento não altera os circuitos, mas o comportamento de forma que ele tenha novas memorias não relacionadas com a droga. (atividades físicas, grupos de ajuda etc). Isso não acontece em 15 dias.. pode levar muitos meses.
- Importante tirar o dependente do ambiente que propicia a recaída => internação.
- Cuidado para o paciente não substituir a dependência!!



 Livros acesso grátis para o estudo de Neurociência. Neuroanatomofisiologia (2019) da USP <u>link</u>

 Aula do Curso de Terapeuta em Dependência Química da Dr. Emanuella Novello Halabi "Neurociência dos transtornos mentais devido ao uso de substâncias psicoativas"

"Como a comida controla o cérebro",
 Artigo Revista SuperInteressante <u>link</u>

National Institute on Drug Abuse <u>link</u>